Cubic polynomials on Lie groups: reduction of the Hamiltonian system

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

the effect of consciousness raising (c-r) on the reduction of translational errors: a case study

در دوره های آموزش ترجمه استادان بیشتر سعی دارند دانشجویان را با انواع متون آشنا سازند، درحالی که کمتر به خطاهای مکرر آنان در متن ترجمه شده می پردازند. اهمیت تحقیق حاضر مبنی بر ارتکاب مکرر خطاهای ترجمانی حتی بعد از گذراندن دوره های تخصصی ترجمه از سوی دانشجویان است. هدف از آن تاکید بر خطاهای رایج میان دانشجویان مترجمی و کاهش این خطاها با افزایش آگاهی و هوشیاری دانشجویان از بروز آنها است.از آنجا ک...

15 صفحه اول

Orthogonal Polynomials of Compact Simple Lie Groups

Recursive algebraic construction of two infinite families of polynomials in n variables is proposed as a uniform method applicable to every semisimple Lie group of rank n. Its result recognizes Chebyshev polynomials of the first and second kind as the special case of the simple group of type A1. The obtained not Laurent-type polynomials are equivalent to the partial cases of theMacdonald symmet...

متن کامل

Horseshoes and Arnold Diffusion for Hamiltonian Systems on Lie Groups

This paper presents theorems which establish the existence of horseshoes and Arnold diffusion for nearly integrable Hamiltonian systems associated with Lie groups. The methods are based on our two previous papers, Holmes and Marsden [1982a], [1982b). The two main examples treated here are as follows: 1. A simplified model of the rigid body with attachments. This system has horseshoes (with one ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2011

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8113/44/35/355203